3.8.46 \(\int \frac {1}{x^2 \sqrt {a+b x} (c+d x)^{3/2}} \, dx\) [746]

3.8.46.1 Optimal result
3.8.46.2 Mathematica [A] (verified)
3.8.46.3 Rubi [A] (verified)
3.8.46.4 Maple [B] (verified)
3.8.46.5 Fricas [B] (verification not implemented)
3.8.46.6 Sympy [F]
3.8.46.7 Maxima [F]
3.8.46.8 Giac [B] (verification not implemented)
3.8.46.9 Mupad [F(-1)]

3.8.46.1 Optimal result

Integrand size = 22, antiderivative size = 124 \[ \int \frac {1}{x^2 \sqrt {a+b x} (c+d x)^{3/2}} \, dx=-\frac {d (b c-3 a d) \sqrt {a+b x}}{a c^2 (b c-a d) \sqrt {c+d x}}-\frac {\sqrt {a+b x}}{a c x \sqrt {c+d x}}+\frac {(b c+3 a d) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{3/2} c^{5/2}} \]

output
(3*a*d+b*c)*arctanh(c^(1/2)*(b*x+a)^(1/2)/a^(1/2)/(d*x+c)^(1/2))/a^(3/2)/c 
^(5/2)-d*(-3*a*d+b*c)*(b*x+a)^(1/2)/a/c^2/(-a*d+b*c)/(d*x+c)^(1/2)-(b*x+a) 
^(1/2)/a/c/x/(d*x+c)^(1/2)
 
3.8.46.2 Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.02 \[ \int \frac {1}{x^2 \sqrt {a+b x} (c+d x)^{3/2}} \, dx=\frac {\frac {\sqrt {a} \sqrt {c} \sqrt {a+b x} (-b c (c+d x)+a d (c+3 d x))}{x \sqrt {c+d x}}+\left (b^2 c^2+2 a b c d-3 a^2 d^2\right ) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{a^{3/2} c^{5/2} (b c-a d)} \]

input
Integrate[1/(x^2*Sqrt[a + b*x]*(c + d*x)^(3/2)),x]
 
output
((Sqrt[a]*Sqrt[c]*Sqrt[a + b*x]*(-(b*c*(c + d*x)) + a*d*(c + 3*d*x)))/(x*S 
qrt[c + d*x]) + (b^2*c^2 + 2*a*b*c*d - 3*a^2*d^2)*ArcTanh[(Sqrt[c]*Sqrt[a 
+ b*x])/(Sqrt[a]*Sqrt[c + d*x])])/(a^(3/2)*c^(5/2)*(b*c - a*d))
 
3.8.46.3 Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.07, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.273, Rules used = {114, 27, 169, 27, 104, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^2 \sqrt {a+b x} (c+d x)^{3/2}} \, dx\)

\(\Big \downarrow \) 114

\(\displaystyle -\frac {\int \frac {b c+3 a d+2 b d x}{2 x \sqrt {a+b x} (c+d x)^{3/2}}dx}{a c}-\frac {\sqrt {a+b x}}{a c x \sqrt {c+d x}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {b c+3 a d+2 b d x}{x \sqrt {a+b x} (c+d x)^{3/2}}dx}{2 a c}-\frac {\sqrt {a+b x}}{a c x \sqrt {c+d x}}\)

\(\Big \downarrow \) 169

\(\displaystyle -\frac {\frac {2 d \sqrt {a+b x} (b c-3 a d)}{c \sqrt {c+d x} (b c-a d)}-\frac {2 \int -\frac {(b c-a d) (b c+3 a d)}{2 x \sqrt {a+b x} \sqrt {c+d x}}dx}{c (b c-a d)}}{2 a c}-\frac {\sqrt {a+b x}}{a c x \sqrt {c+d x}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {(3 a d+b c) \int \frac {1}{x \sqrt {a+b x} \sqrt {c+d x}}dx}{c}+\frac {2 d \sqrt {a+b x} (b c-3 a d)}{c \sqrt {c+d x} (b c-a d)}}{2 a c}-\frac {\sqrt {a+b x}}{a c x \sqrt {c+d x}}\)

\(\Big \downarrow \) 104

\(\displaystyle -\frac {\frac {2 (3 a d+b c) \int \frac {1}{\frac {c (a+b x)}{c+d x}-a}d\frac {\sqrt {a+b x}}{\sqrt {c+d x}}}{c}+\frac {2 d \sqrt {a+b x} (b c-3 a d)}{c \sqrt {c+d x} (b c-a d)}}{2 a c}-\frac {\sqrt {a+b x}}{a c x \sqrt {c+d x}}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {\frac {2 d \sqrt {a+b x} (b c-3 a d)}{c \sqrt {c+d x} (b c-a d)}-\frac {2 (3 a d+b c) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{\sqrt {a} c^{3/2}}}{2 a c}-\frac {\sqrt {a+b x}}{a c x \sqrt {c+d x}}\)

input
Int[1/(x^2*Sqrt[a + b*x]*(c + d*x)^(3/2)),x]
 
output
-(Sqrt[a + b*x]/(a*c*x*Sqrt[c + d*x])) - ((2*d*(b*c - 3*a*d)*Sqrt[a + b*x] 
)/(c*(b*c - a*d)*Sqrt[c + d*x]) - (2*(b*c + 3*a*d)*ArcTanh[(Sqrt[c]*Sqrt[a 
 + b*x])/(Sqrt[a]*Sqrt[c + d*x])])/(Sqrt[a]*c^(3/2)))/(2*a*c)
 

3.8.46.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 114
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e 
 - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) 
 - b*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] && (IntegerQ[n] || 
 IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])
 

rule 169
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + 
 d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + S 
imp[1/((m + 1)*(b*c - a*d)*(b*e - a*f))   Int[(a + b*x)^(m + 1)*(c + d*x)^n 
*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a* 
h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*x, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n, 2*p]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 
3.8.46.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(440\) vs. \(2(104)=208\).

Time = 1.68 (sec) , antiderivative size = 441, normalized size of antiderivative = 3.56

method result size
default \(\frac {\sqrt {b x +a}\, \left (3 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a^{2} d^{3} x^{2}-2 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a b c \,d^{2} x^{2}-\ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) b^{2} c^{2} d \,x^{2}+3 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a^{2} c \,d^{2} x -2 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a b \,c^{2} d x -\ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) b^{2} c^{3} x -6 a \,d^{2} x \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, b c d x -2 a c d \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, b \,c^{2}\right )}{2 a \,c^{2} \left (a d -b c \right ) \sqrt {a c}\, x \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {d x +c}}\) \(441\)

input
int(1/x^2/(d*x+c)^(3/2)/(b*x+a)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/2*(b*x+a)^(1/2)/a/c^2*(3*ln((a*d*x+b*c*x+2*(a*c)^(1/2)*((b*x+a)*(d*x+c)) 
^(1/2)+2*a*c)/x)*a^2*d^3*x^2-2*ln((a*d*x+b*c*x+2*(a*c)^(1/2)*((b*x+a)*(d*x 
+c))^(1/2)+2*a*c)/x)*a*b*c*d^2*x^2-ln((a*d*x+b*c*x+2*(a*c)^(1/2)*((b*x+a)* 
(d*x+c))^(1/2)+2*a*c)/x)*b^2*c^2*d*x^2+3*ln((a*d*x+b*c*x+2*(a*c)^(1/2)*((b 
*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*a^2*c*d^2*x-2*ln((a*d*x+b*c*x+2*(a*c)^(1/2) 
*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*a*b*c^2*d*x-ln((a*d*x+b*c*x+2*(a*c)^(1/ 
2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*b^2*c^3*x-6*a*d^2*x*(a*c)^(1/2)*((b*x 
+a)*(d*x+c))^(1/2)+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)*b*c*d*x-2*a*c*d*( 
a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)*b 
*c^2)/(a*d-b*c)/(a*c)^(1/2)/x/((b*x+a)*(d*x+c))^(1/2)/(d*x+c)^(1/2)
 
3.8.46.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 236 vs. \(2 (104) = 208\).

Time = 0.41 (sec) , antiderivative size = 492, normalized size of antiderivative = 3.97 \[ \int \frac {1}{x^2 \sqrt {a+b x} (c+d x)^{3/2}} \, dx=\left [\frac {{\left ({\left (b^{2} c^{2} d + 2 \, a b c d^{2} - 3 \, a^{2} d^{3}\right )} x^{2} + {\left (b^{2} c^{3} + 2 \, a b c^{2} d - 3 \, a^{2} c d^{2}\right )} x\right )} \sqrt {a c} \log \left (\frac {8 \, a^{2} c^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} + 4 \, {\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {a c} \sqrt {b x + a} \sqrt {d x + c} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x}{x^{2}}\right ) - 4 \, {\left (a b c^{3} - a^{2} c^{2} d + {\left (a b c^{2} d - 3 \, a^{2} c d^{2}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{4 \, {\left ({\left (a^{2} b c^{4} d - a^{3} c^{3} d^{2}\right )} x^{2} + {\left (a^{2} b c^{5} - a^{3} c^{4} d\right )} x\right )}}, -\frac {{\left ({\left (b^{2} c^{2} d + 2 \, a b c d^{2} - 3 \, a^{2} d^{3}\right )} x^{2} + {\left (b^{2} c^{3} + 2 \, a b c^{2} d - 3 \, a^{2} c d^{2}\right )} x\right )} \sqrt {-a c} \arctan \left (\frac {{\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {-a c} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (a b c d x^{2} + a^{2} c^{2} + {\left (a b c^{2} + a^{2} c d\right )} x\right )}}\right ) + 2 \, {\left (a b c^{3} - a^{2} c^{2} d + {\left (a b c^{2} d - 3 \, a^{2} c d^{2}\right )} x\right )} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left ({\left (a^{2} b c^{4} d - a^{3} c^{3} d^{2}\right )} x^{2} + {\left (a^{2} b c^{5} - a^{3} c^{4} d\right )} x\right )}}\right ] \]

input
integrate(1/x^2/(d*x+c)^(3/2)/(b*x+a)^(1/2),x, algorithm="fricas")
 
output
[1/4*(((b^2*c^2*d + 2*a*b*c*d^2 - 3*a^2*d^3)*x^2 + (b^2*c^3 + 2*a*b*c^2*d 
- 3*a^2*c*d^2)*x)*sqrt(a*c)*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^ 
2)*x^2 + 4*(2*a*c + (b*c + a*d)*x)*sqrt(a*c)*sqrt(b*x + a)*sqrt(d*x + c) + 
 8*(a*b*c^2 + a^2*c*d)*x)/x^2) - 4*(a*b*c^3 - a^2*c^2*d + (a*b*c^2*d - 3*a 
^2*c*d^2)*x)*sqrt(b*x + a)*sqrt(d*x + c))/((a^2*b*c^4*d - a^3*c^3*d^2)*x^2 
 + (a^2*b*c^5 - a^3*c^4*d)*x), -1/2*(((b^2*c^2*d + 2*a*b*c*d^2 - 3*a^2*d^3 
)*x^2 + (b^2*c^3 + 2*a*b*c^2*d - 3*a^2*c*d^2)*x)*sqrt(-a*c)*arctan(1/2*(2* 
a*c + (b*c + a*d)*x)*sqrt(-a*c)*sqrt(b*x + a)*sqrt(d*x + c)/(a*b*c*d*x^2 + 
 a^2*c^2 + (a*b*c^2 + a^2*c*d)*x)) + 2*(a*b*c^3 - a^2*c^2*d + (a*b*c^2*d - 
 3*a^2*c*d^2)*x)*sqrt(b*x + a)*sqrt(d*x + c))/((a^2*b*c^4*d - a^3*c^3*d^2) 
*x^2 + (a^2*b*c^5 - a^3*c^4*d)*x)]
 
3.8.46.6 Sympy [F]

\[ \int \frac {1}{x^2 \sqrt {a+b x} (c+d x)^{3/2}} \, dx=\int \frac {1}{x^{2} \sqrt {a + b x} \left (c + d x\right )^{\frac {3}{2}}}\, dx \]

input
integrate(1/x**2/(d*x+c)**(3/2)/(b*x+a)**(1/2),x)
 
output
Integral(1/(x**2*sqrt(a + b*x)*(c + d*x)**(3/2)), x)
 
3.8.46.7 Maxima [F]

\[ \int \frac {1}{x^2 \sqrt {a+b x} (c+d x)^{3/2}} \, dx=\int { \frac {1}{\sqrt {b x + a} {\left (d x + c\right )}^{\frac {3}{2}} x^{2}} \,d x } \]

input
integrate(1/x^2/(d*x+c)^(3/2)/(b*x+a)^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(b*x + a)*(d*x + c)^(3/2)*x^2), x)
 
3.8.46.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 476 vs. \(2 (104) = 208\).

Time = 0.68 (sec) , antiderivative size = 476, normalized size of antiderivative = 3.84 \[ \int \frac {1}{x^2 \sqrt {a+b x} (c+d x)^{3/2}} \, dx=\frac {2 \, \sqrt {b x + a} b^{2} d^{2}}{{\left (b c^{3} {\left | b \right |} - a c^{2} d {\left | b \right |}\right )} \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}} + \frac {{\left (\sqrt {b d} b^{3} c + 3 \, \sqrt {b d} a b^{2} d\right )} \arctan \left (-\frac {b^{2} c + a b d - {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2}}{2 \, \sqrt {-a b c d} b}\right )}{\sqrt {-a b c d} a b c^{2} {\left | b \right |}} - \frac {2 \, {\left (\sqrt {b d} b^{5} c^{2} - 2 \, \sqrt {b d} a b^{4} c d + \sqrt {b d} a^{2} b^{3} d^{2} - \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} b^{3} c - \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a b^{2} d\right )}}{{\left (b^{4} c^{2} - 2 \, a b^{3} c d + a^{2} b^{2} d^{2} - 2 \, {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} b^{2} c - 2 \, {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a b d + {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{4}\right )} a c^{2} {\left | b \right |}} \]

input
integrate(1/x^2/(d*x+c)^(3/2)/(b*x+a)^(1/2),x, algorithm="giac")
 
output
2*sqrt(b*x + a)*b^2*d^2/((b*c^3*abs(b) - a*c^2*d*abs(b))*sqrt(b^2*c + (b*x 
 + a)*b*d - a*b*d)) + (sqrt(b*d)*b^3*c + 3*sqrt(b*d)*a*b^2*d)*arctan(-1/2* 
(b^2*c + a*b*d - (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a 
*b*d))^2)/(sqrt(-a*b*c*d)*b))/(sqrt(-a*b*c*d)*a*b*c^2*abs(b)) - 2*(sqrt(b* 
d)*b^5*c^2 - 2*sqrt(b*d)*a*b^4*c*d + sqrt(b*d)*a^2*b^3*d^2 - sqrt(b*d)*(sq 
rt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*b^3*c - sqr 
t(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a 
*b^2*d)/((b^4*c^2 - 2*a*b^3*c*d + a^2*b^2*d^2 - 2*(sqrt(b*d)*sqrt(b*x + a) 
 - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*b^2*c - 2*(sqrt(b*d)*sqrt(b*x + 
a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a*b*d + (sqrt(b*d)*sqrt(b*x + 
a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4)*a*c^2*abs(b))
 
3.8.46.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^2 \sqrt {a+b x} (c+d x)^{3/2}} \, dx=\int \frac {1}{x^2\,\sqrt {a+b\,x}\,{\left (c+d\,x\right )}^{3/2}} \,d x \]

input
int(1/(x^2*(a + b*x)^(1/2)*(c + d*x)^(3/2)),x)
 
output
int(1/(x^2*(a + b*x)^(1/2)*(c + d*x)^(3/2)), x)